Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Inherit Metab Dis ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618884

RESUMO

Fabry disease (FD) is an X-linked multiorgan disorder caused by variants in the alpha-galactosidase A gene (GLA). Depending on the variant, disease phenotypes range from benign to life-threatening. More than 1000 GLA variants are known, but a link between genotype and phenotype in FD has not yet been established for all. p.A143T, p.D313Y, and p.S126G are frequent examples of variants of unknown significance (VUS). We have investigated the potential pathogenicity of these VUS combining clinical data with data obtained in human cellular in vitro systems. We have analyzed four different male subject-derived cell types for alpha-galactosidase A enzyme (GLA) activity and intracellular Gb3 load. Additionally, Gb3 load in skin tissue as well as clinical data were studied for correlates of disease manifestations. A reduction of GLA activity was observed in cells carrying p.A143T compared with controls (p < 0.05). In cells carrying the p.D313Y variant, a reduced GLA activity was found only in endothelial cells (p < 0.01) compared with controls. No pathological changes were observed in cells carrying the p.S126G variant. None of the VUS investigated caused intracellular Gb3 accumulation in any cell type. Our data of aberrant GLA activity in cells of p.A143T hemizygotes and overall normal cellular phenotypes in cells of p.D313Y and p.S126G hemizygotes contribute a basic science perspective to the clinically highly relevant discussion on VUS in GLA.

2.
Brain Commun ; 6(2): fcae095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638148

RESUMO

Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.

3.
Hum Genomics ; 18(1): 23, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448978

RESUMO

BACKGROUND/OBJECTIVES: Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS: The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION: In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.


Assuntos
Anormalidades Múltiplas , Nanismo , Osteocondrodisplasias , Animais , Feminino , Humanos , Gravidez , Mutação com Ganho de Função , Irã (Geográfico) , RNA Mensageiro , Proteínas com Domínio T/genética , Fatores de Transcrição , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Mol Metab ; 79: 101859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142971

RESUMO

BACKGROUND: Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS: We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS: Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to ß-adrenergic stimulation. CONCLUSIONS: Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Ataxia Cerebelar , Células-Tronco Pluripotentes Induzidas , Maleatos , Erros Inatos do Metabolismo , Humanos , Trifosfato de Adenosina/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Células HeLa , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Respiração
5.
Stem Cell Res ; 73: 103240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995437

RESUMO

Arrhythmogenic cardiomyopathy (ACM) represents the cardiac phenotype of Naxos disease, an autosomal recessive disease with an additional cutaneous phenotype. ACM is mainly caused by mutated desmosomal proteins, which are part of cardiac adherens junctions and provide mechanical and electrical stability. Here, we generated a knock-out (KO) of the junctional protein Plakoglobin (JUP-KO; JMUi001-A-4) using the CRISPR/Cas9 system in healthy control induced pluripotent stem cells (iPSCs, (JMUi001-A). JUP-KO iPSCs maintained pluripotency, differentiation potential and genomic integrity and provide an in vitro system modelling ACM when differentiated into cardiomyocytes.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , gama Catenina/genética , gama Catenina/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Miócitos Cardíacos/metabolismo , Fenótipo
6.
Hamostaseologie ; 43(4): 244-251, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37611606

RESUMO

Inherited platelet disorders (IPDs) are a heterogeneous group of rare entities caused by molecular divergence in genes relevant for platelet formation and function. A rational diagnostic approach is necessary to counsel and treat patients with IPDs. With the introduction of high-throughput sequencing at the beginning of this millennium, a more accurate diagnosis of IPDs has become available. We discuss advantages and limitations of genetic testing, technical issues, and ethical aspects. Additionally, we provide information on the clinical significance of different classes of variants and how they are correctly reported.


Assuntos
Transtornos Plaquetários , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Relevância Clínica , Testes Genéticos
7.
Hamostaseologie ; 43(4): 252-260, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37611607

RESUMO

Thrombocytopenia absent radius (TAR) syndrome is a rare form of hereditary thrombocytopenia associated with a bilateral radial aplasia. TAR syndrome is genetically defined by the combination of a microdeletion on chromosome 1 which includes the gene RBM8A, and a single nucleotide polymorphism (SNP) in the second RBM8A allele. While most patients with TAR syndrome harbor a SNP in either the 5' UTR region or in intron 1 of RBM8A, further SNPs associated with TAR syndrome are still being identified. Here, we report on the current understanding of the genetic basis, diagnosis, and therapy of TAR syndrome and discuss patient self-empowerment by enabling networking and exchange between affected individuals and families.


Assuntos
Rádio (Anatomia) , Trombocitopenia , Humanos , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Íntrons
8.
Stem Cell Res ; 69: 103094, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079968

RESUMO

Using human dermal fibroblasts (hdF) derived from a patient carrying a c.1678C>G variant located in the TRPA1 gene, induced pluripotent stem cells (iPSC) were generated. Cells were reprogrammed via non-modified (NM) RNA-based transfection resulting in three clones. All three clones showed typical embryonic stem cell-like properties including expression of pluripotency markers, morphology, normal karyotype, and potential differentiation in all three germ layers. With this novel cell line, we offer an in vitro option to study TRPA1 gene variant c.1678C>G and its potential involvement in the development of neuropathic pain as a symptom of small fiber neuropathy (SFN).


Assuntos
Células-Tronco Pluripotentes Induzidas , Neuropatia de Pequenas Fibras , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuropatia de Pequenas Fibras/metabolismo , Diferenciação Celular , Linhagem Celular , Transfecção , Mutação , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
9.
Stem Cell Res ; 67: 103038, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746102

RESUMO

Fibroblasts isolated from a skin biopsy of a healthy individual were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate an isogenic cell line carrying an inactivation of ST3GAL3, a risk gene associated with neurodevelopmental and psychiatric disorders. This ST3GAL3 null mutant (ST3GAL3-/-) iPSC line, which displays the expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal karyotype, is a powerful tool to investigate the impact of deficient sialylation of glycoproteins in neural development and plasticity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Edição de Genes , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular
11.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36254247

RESUMO

The group of Fibronectin type III domain-containing (FNDC; InterPro IPR003961) protein super family splits into a large number of gene-orthologues and mediates a variety of cellular functions during development and disease. They act as anti-inflammatory factors, are linked to cell-cell-interactions, regulate cell signaling and are associated with different cancer types, like cervical and colorectal. One member of this gene family is FNDC3A , which influences different developmental processes in vertebrates, like Sertoli cell/spermatid adhesion in mice testis, bone traits in chicken, and fin development in zebrafish. To identify downstream molecular processes during vertebrate development we investigated gene expression profiles in the previously established fndc3a zebrafish mutants via microarray analyses on 22 hpf embryos (26-somite stage). Our analyses imply distinct transcriptional profiles between genotype groups and hint to altered cell binding and catalytic activity in fndc3a mutants.

12.
Stem Cell Res ; 61: 102747, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325818

RESUMO

Human dermal fibroblasts (HDF) were obtained by skin punch biopsy from a 51-year old man with suspected Fabry disease (FD), carrying the hemizygous c.376A > G variant in the α-galactosidase A gene (GLA). Cultured HDF were reprogrammed to induced pluripotent stem cells (iPSC) using a non-modified RNA-based transfection protocol. GLA-S126G-iPSC exhibit typical embryonic stem cell-like morphology, normal karyotype, expression of all tested pluripotency markers, and three germ layer differentiation potential. We provide a novel patient-specific cell line that can be used to investigate a genetic variation of yet unknown significance.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Doença de Fabry/genética , Doença de Fabry/patologia , Galactosidases/genética , Galactosidases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Virulência
13.
Stem Cell Res ; 56: 102526, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492570

RESUMO

Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Variações do Número de Cópias de DNA , Camadas Germinativas , Transportador de Glucose Tipo 3 , Humanos , Leucócitos Mononucleares
14.
Toxicol Lett ; 344: 69-81, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722575

RESUMO

Due to an increasing demand for testing of new and existing chemicals and legal restrictions for the use of animals, there is a strong need for alternative approaches to assess systemic toxicity. Embryonic and larval zebrafish (Danio rerio) are increasingly recognized as a promising alternative whole-animal model that may be able to overcome limitations of cell-based in vitro assays and bridge the gap between high-throughput in vitro screening and low-throughput in vivo tests in animals. Despite the relatively simple anatomical structure of the zebrafish larval kidney (pronephros) - composed of only two nephrons - the pronephros shares major functions and cell types with mammalian nephrons. Glomerular filtration begins at 48 h post fertilization. The aim of the present study was to investigate if early zebrafish larvae might be a suitable model for nephrotoxicity testing. On day 3 post fertilization, larval zebrafish were treated with selected nephrotoxins (aristolochic acid, cadmium chloride, potassium bromate, ochratoxin A, gentamicin) for 48 h. Histological evaluation of zebrafish larvae exposed to model nephrotoxins revealed tubule injury as evidenced by dilated tubules with loss of the brush border, tubule cell necrosis and disorganization of the tubular epithelium. These changes were most severe after treatment with gentamicin, which also impaired pronephros function as evidenced by reduced clearance of FITC-dextran. Whole-mount in situ hybridization showing loss of cdh17 expression revealed site-specific injury to the proximal tubule segment. Analysis of genes previously identified as novel biomarkers of kidney injury in mammals showed upregulation of the kidney injury marker genes heme oxygenase 1 (hmox1), clusterin (clu), secreted phosphoprotein/osteopontin (spp1), connective tissue growth factor (ctgf) and kim-1 (havcr-1) in response to nephrotoxin treatment, although the response of individual genes varied across compounds. Consistent with the severity of lesions and impaired kidney function, the most prominent gene expression changes occurred in larvae exposed to gentamicin. Overall, our results suggest that larval zebrafish may be a suitable alternative model organism for nephrotoxicity screening, yet further improvements and integration with quantitative in vitro to in vivo extrapolation will be needed to predict human toxicity.


Assuntos
Caderinas/metabolismo , Modelos Animais de Doenças , Testes de Toxicidade/métodos , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Biomarcadores/metabolismo , Caderinas/genética , Sistema Nervoso Central , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Rim/efeitos dos fármacos , Larva , Proteínas de Peixe-Zebra/genética
15.
Stem Cell Res ; 53: 102256, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640690

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is characterized by fibro-fatty replacement of the myocardium, heart failure and life-threatening ventricular arrhythmias. Causal mutations were identified in genes encoding for proteins of the desmosomes, predominantly plakophilin-2 (PKP2) and desmoglein-2 (DSG2). We generated gene-edited knock-out iPSC lines for PKP2 (JMUi001-A-2) and DSG2 (JMUi001-A-3) using the CRISPR/Cas9 system in a healthy control iPSC background (JMUi001-A). Stem cell-like morphology, robust expression of pluripotency markers, embryoid body formation and normal karyotypes confirmed the generation of high quality iPSCs to provide a novel isogenic human in vitro model system mimicking ACM when differentiated into cardiomyocytes.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Cardiomiopatias/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Placofilinas/genética
16.
Stem Cell Res ; 51: 102169, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486346

RESUMO

Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13+/-) and a CDH13 null mutant (CDH13-/-) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos do Neurodesenvolvimento , Sistemas CRISPR-Cas , Caderinas , Feminino , Heterozigoto , Humanos , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética
17.
Biomolecules ; 10(12)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302551

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5'-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme's role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.


Assuntos
Fosfatase Alcalina/genética , Ansiedade/genética , Osso e Ossos/enzimologia , Depressão/genética , Hipofosfatasia/genética , Convulsões/genética , Dente/enzimologia , Fosfatase Alcalina/deficiência , Animais , Ansiedade/enzimologia , Ansiedade/patologia , Osso e Ossos/patologia , Calcificação Fisiológica/genética , Depressão/enzimologia , Depressão/patologia , Difosfatos/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Humanos , Hipofosfatasia/enzimologia , Hipofosfatasia/patologia , Mutação , Convulsões/enzimologia , Convulsões/patologia , Índice de Gravidade de Doença , Dente/crescimento & desenvolvimento , Vitamina B 6/metabolismo
18.
Clin Genet ; 98(4): 418-419, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33294970

RESUMO

The clinical impact of duplications affecting the 11p15.5 region is difficult to predict, and depends on the parent-of-origin of the affected allele as well as on the type (deletion, duplication), the extent and genomic content of the variant. Three unrelated families with inheritance of duplications affecting the IC1 region in 11p15.5 through two generations but different phenotypes (Beckwith-Wiedemann and Silver-Russell syndromes, normal phenotype) are reported. The inconsistent phenotypic patterns of carriers of the same variant strongly indicate the impact of cis- and/or trans-acting modifiers on the clinical outcome of IC1 duplication carriers.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Predisposição Genética para Doença , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Síndrome de Silver-Russell/genética , Alelos , Síndrome de Beckwith-Wiedemann/patologia , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica/genética , Cromossomos Humanos Par 11/genética , Feminino , Impressão Genômica/genética , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/patologia
19.
Z Kinder Jugendpsychiatr Psychother ; 48(6): 478-489, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33172359

RESUMO

Objective: Developmental dyslexia is a highly heritable specific reading and writing disability. To identify a possible new locus and candidate gene for this disability, we investigated a four-generation pedigree where transmission of dyslexia is consistent with an autosomal dominant inheritance pattern. Methods: We performed genome wide array-based SNP genotyping and parametric linkage analysis and sequencing analysis of protein-coding exons, exon-intron boundaries and conserved extragenic regions within the haplotype cosegregating with dyslexia in DNA from one affected and one unaffected family member. Cosegregation was confirmed by sequencing all available family members. Additionally, we analyzed 96 dyslexic individuals who had previously shown positive LOD scores on chromosome 4q28 as well as an even larger sample (n = 2591). Results: We found a single prominent linkage interval on chromosome 4q, where sequence analysis revealed a nucleotide variant in the 3' UTR of brain expressed SPRY1 in the dyslexic family member that cosegregated with dyslexia. This sequence alteration might affect the binding efficiency of the IGF2BP1 RNA-binding protein and thus influence the expression level of the SPRY1 gene product. An analysis of 96 individuals from a cohort of dyslexic individuals revealed a second heterozygous variant in this gene, which was absent in the unaffected sister of the proband. An investigation of the region in a much larger sample further found a nominal p-value of 0.0016 for verbal short-term memory (digit span) in 2,591 individuals for a neighboring SNV. After correcting for the local number of analyzed SNVs, and after taking into account linkage disequilibrium, we found this corresponds to a p-value of 0.0678 for this phenotype. Conclusions: We describe a new locus for familial dyslexia and discuss the possibility that SPRY1 might play a role in the etiology of a monogenic form of dyslexia.


Assuntos
Cromossomos Humanos Par 4/genética , Dislexia/genética , Regiões 3' não Traduzidas/genética , Saúde da Família , Humanos , Escore Lod , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Linhagem , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo
20.
Sci Rep ; 10(1): 13321, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770041

RESUMO

Hypophosphatasia (HPP) is a rare genetic disease with diverse symptoms and a heterogeneous severity of onset with underlying mutations in the ALPL gene encoding the ectoenzyme Tissue-nonspecific alkaline phosphatase (TNAP). Considering the establishment of zebrafish (Danio rerio) as a new model organism for HPP, the aim of the study was the spatial and temporal analysis of alpl expression in embryos and adult brains. Additionally, we determined functional consequences of Tnap inhibition on neural and skeletal development in zebrafish. We show that expression of alpl is present during embryonic stages and in adult neuronal tissues. Analyses of enzyme function reveal zones of pronounced Tnap-activity within the telencephalon and the mesencephalon. Treatment of zebrafish embryos with chemical Tnap inhibitors followed by axonal and cartilage/mineralized tissue staining imply functional consequences of Tnap deficiency on neuronal and skeletal development. Based on the results from neuronal and skeletal tissue analyses, which demonstrate an evolutionary conserved role of this enzyme, we consider zebrafish as a promising species for modeling HPP in order to discover new potential therapy strategies in the long-term.


Assuntos
Fosfatase Alcalina/biossíntese , Regulação Enzimológica da Expressão Gênica , Hipofosfatasia/metabolismo , Desenvolvimento Musculoesquelético , Neurogênese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Fosfatase Alcalina/genética , Animais , Modelos Animais de Doenças , Hipofosfatasia/genética , Hipofosfatasia/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...